Renewable Hydrogen: Another Option for Future Generations

By Chris J. Zygarlicke
In a previous series of Energy & Environmental Research Center columns, we provided an update on various generational categories of biomass-derived transportation fuels. We discussed first-generation biofuels such as corn-based ethanol, second-generation biofuels including cellulosic biofuels such as ethanol and green diesel, and third-generation biofuels such as drop-in-compatible jet fuel from nonfood feedstocks. Biomass-derived hydrogen is a third- or even fourth-generation biofuel, requiring a major change in automobile technology and fuel infrastructure.

Two recent events, Advancing the Hydrogen Economy Action Summit II (sponsored by U.S. Sen. Byron Dorgan) at the EERC in Grand Forks, N.D., and the National Hydrogen Association Renewable Hydrogen Forum in Golden, Colo., revealed that biomass-derived hydrogen certainly has a future in automobile transportation.
Key federal policymakers and leaders of several automakers made it clear that hydrogen is no longer just a pipe dream never to awaken and enter into real-world transportation sectors. Hydrogen vehicles are ready for deployment from a number of automakers and should be considered one of the answers to achieving energy security in the United States.

Four General Motors fuel cell vehicles were featured as part of the recent Hydrogen Economy Action Summit. Attendees got behind the wheel of the Chevrolet Equinox fuel cell electric vehicles for an out-of-this-world test drive. The zero-gas, zero-emission vehicle achieves 0 to 60 miles per hour in 12 seconds and can reach a top speed of approximately 100 miles per hour-hardly a golf cart performance.

It may seem ridiculous to be excited about the 200 fuel cell vehicles in existence that cost several hundred thousand dollars each, but only three years ago the entire United States had fewer than 20 such vehicles. Major advancements have been made in improving fuel cell vehicle performance, but work remains to be done on hydrogen production and distribution.

In September, the EERC dedicated a new $3.5 million facility for its National Center for Hydrogen Technology, which was created in 2004 in recognition of more than 50 years of hydrogen research involving fossil and renewable energy. The EERC's NCHT program is dedicated to making technological advances toward achieving the hydrogen economy. NCHT's current and pending research totals more than $60 million for hydrogen-related research, development, demonstration and commercialization activities, with more than 70 private sector partners nationwide. Research projects include hydrogen production from biomass.

In the next issue, we will tackle the challenge of providing biomass-based hydrogen for fuel cell vehicles.

Chris J. Zygarlicke, is a deputy associate director for research at the EERC and is vice chairman of the National Hydrogen Association Renewable Hydrogen Working Group. Reach him at or (701) 777-5123.