Dealing With Disaster Debris

From hurricane winds and flooding, to radicals piloting passenger jets into skyscrapers, disasters are a tragic part of life. After people are safely removed from harm's way, proper planning and technology could be used to revolutionize debris management.
By Ron Kotrba
Being prepared for the worst is a good philosophy all around. But planning and training for disaster relief take real discipline-and money. People's safety is first and foremost but once the residents are securely out of harm's way, what is the best way for the authorities to deal with the aftermath? To answer this question just look at current practices-and do the opposite.

"In '85 after Hurricane Gloria hit, what did they do with all that material?" asks Joe Murray, chief executive officer of Green Energy Resources. Hurricane Gloria lost strength before it hit land on the Outer Banks in North Carolina, but the storm rode coastal waters north and gained tremendous power, finally making its second landfall on Long Island, N.Y. It turned into one of the most powerful hurricanes to hit New England in years, causing $900 million in property damage and generating millions of tons of debris. "They took it all and dumped it in landfills," Murray says. "Then they'd fill them up. It's a crazy waste of time and taxpayer money."

Twenty years later when Hurricanes Katrina and Rita ravaged the Gulf Coast, debris management was much the same and as inefficient as ever. Mountains of woody debris were piled up and then trucked to a landfill, torched, or just left to rot. "There are properties from Katrina and Rita where piles are still sitting," Murray says. His company, Green Energy Resources, offered to purchase 2 million tons of wood waste that the hurricanes left behind at $10 a ton but found no takers.

"The federal contractors-they could care less," he says. "They wanted to do business the traditional way. They have an arrangement and I don't completely understand it. If they need to take it and dump it in a landfill, then the landfill capitalizes and makes money and the cleanup guys make money. It sounds a little cozy to me. And what's worse is you're offering to pay for a product that none of them even own, which should be recoverable by the local taxpayers because it's their disaster. No one would even give it a second thought."

Cleaning up Ground Zero
The Federal Emergency Management Agency is still being criticized after its questionable managing of Katrina-and rightfully so. From delayed rescues of minorities and the poor, to setting people up in chemically contaminated trailers, to managing waste wood and debris, FEMA is not winning any popularity contests lately. Jim Taylor Jr., owner of Taylor Biomass Energy, puts FEMA's "landfill or burn" practice in perspective. "You've got to remember that there's no technology down there set up to handle that much material," he says. A clear mission exists to get people safely out of their homes, open the streets and clean up the town-all as quickly as possible. "There's not the latitude to do much more than that," Taylor says.

Taylor Biomass Energy specializes in sorting and separating technology, and was contracted by the FBI to clean up ground zero where the World Trade Center twin towers collapsed on Sept. 11, 2001. He was hired by the FBI because the enormous mountain of rubble was not just a disaster site but it was also a crime scene. "We were hired because of our technology," Taylor says. "It put their workers in a safe environment, and was seven times more effective in getting out what they were looking for-the human recovery, looking for someone's belt buckle, ring or watch to be able to relate to someone." Countless personal affects were sorted out from the 550,000 tons of debris Taylor's company processed, which were then put on display for familes to identify.

Debris from ground zero was barged 15 miles to Fresh Kills Landfill on Staten Island, where Taylor set up portable separation outfits that ran 24/7 for nine months. "We put the material through our station and separated fines of three-quarters of an inch and less, versus from three-quarters of an inch to six inches, then six inches to two feet, and then two
feet and above," Taylor tells Biomass Magazine.

The history of Taylor's sorting and separating technology began as "five men in a box," he says. "We learned it the hard way but in the end we learned sorting and separating very well." His company was one of the first construction and demolition (C&D) waste recyclers around, and today his family-owned technology finds useful purposes for stuff formerly thought to be unreusable. Waste wood is used for mulch; dirt collected from tree stumps is screened and sold as top soil; rock, asphalt, brick and concrete are crushed, aggregated and reused; old drywall is peeled and the paper is sold as animal bedding while the gypsum is crushed and sold back to a drywall plant.

After he developed ways to recycle a good percentage of C&D waste, Taylor says he then delved into finding the next tool to do something with the rest of the materials. "The recycled product we'd next manufacture is green energy," he says. Taylor spent a couple of years negotiating with Battelle labs in Atlanta to develop gasification technology but no agreements were made. Then he set out with a former employee of Battelle to develop the gasification and gas cleanup technologies he implements today. It's still patent-pending but Taylor says he expects his patents in six months. "Coming on line with these biomass gasification plants is really the solution for natural disasters and storms," he says.

The Transportation Problem
One problem with collecting disaster debris is that there's no way to direct future disasters to strike in vicinities of large biomass plants, where the materials can be put to use; and without strategic post-disaster debris staging and transportation planning, there is little hope those biomass piles will ever reach a righteous destination.

"Because it's a low- or no-value commodity, you can't even take some of this stuff from one side of Florida to the other because there's no money involved," Murray says. "Oil, gas, coal-those can all be transported. It seems crazy to me that coal is $150 a ton and we can transport wood at a fraction of that price, say a third, and people still don't want to use it." He says the 50 million tons of debris generated in 2005 could have supplied every U.S. coal-burning power plant with enough wood to cofire them all with a 10 percent mix for an entire year. Instead, precious landfill space was wasted and perfectly good fuel was openly incinerated.

Part of good planning involves mapping out the potential storage areas for debris in any given county, town or city, along with understanding the risks of storage like odor, rodents and fire. An ideal storage location would have rail access but even then there are no guarantees.

In October 2006, on a Friday the 13th, Buffalo, N.Y., was hit with a surprise snowfall. "A million tons of wood came down," Murray says. "The staging area was at Bethlehem Steel. Guess what? They have railcars there. It's a great place to send this stuff all over the country. But the federal contractors and subcontractors came in with their tub-grinders and turned everything into a big pile that wasn't worth anything-even to power plants."

Looking Ahead
A professor of eco-management at the University of Washington is working on a way to overcome all the issues involved in transporting disaster debris. Rather than bringing the biomass to a centralized plant hundreds or thousands of miles away, Kristiina Vogt supports the concept of mobile disaster units to convert woody debris to fuel-methanol specifically-on-site. She has been working to promote this idea in Indonesia and a few Latin American countries. "When Katrina hit, I got a lot of phone calls from people interested in getting a mobile system out there because a lot of the wood was down, but nobody could access it," Vogt says.

No demonstration model of this mobile disaster unit has been built yet, but Vogt says it's not because the technology isn't there. A lack of funding is holding this solution back, she says. "We've been offered money, but the people who want to pay to build it totally want to control it," she says. The idea is to have a system to preprocess the debris and convert it into methanol through gasification and reforming and mount it on the back of a flatbed trailer. The system and the truck itself would be run on methanol-powered fuel cells-entirely self-sustaining. Then, rather than hauling tons of debris from the disaster site, staged fuel trucks could haul the much denser methanol away. The methanol could also be used on-site as fuel to power additional fuel cells for emergency use of computers, cell phones and more. "At a disaster site, the ability to maintain some infrastructure and communication with this technology increases pretty dramatically," Vogt says. "And in emergencies you'd have the ability to provide lots of distributed power," all run on locally generated debris. "We are going to have disasters. We need a process on the ground instead of just giving people trailers which they then find out are loaded with formaldehydes."

Frustrated from his experiences from Katrina and Rita three years ago, Murray says he has a better plan in place now. "Once product from a storm goes into the landfill, we can recover and transport it and work with the end-user to generate additional carbon credits, which will increase the value of the debris," he says. The feds, their contractors and the landfills can all continue doing "business as usual," Murray says, while the generation of carbon credits put companies like his in a better position to recover all that landfilled debris after disaster, and transport it longer distances more economically. BIO

Ron Kotrba is a Biomass Magazine senior writer. Reach him at [email protected] or (701) 738-4942.