Transport Truths

Proper strategies and equipment simplify biomass feedstock procurement
By Luke Geiver | April 03, 2012

When Mark Standley Jr. and his crew at Biomass Harvesting LLC began hauling woody biomass off Northwest Oregon job sites in 2007, they could handle roughly three or four loads every day. They were professional loggers, employed by Bighorn Logging out of Banks, Ore.

Today, Standley’s team hauls 10 to 15 loads per day, and has a $2.5 million capital investment in a Peterson 5710C horizontal grinder, a 210 Kobelco excavator and log loader, a Z200F Hitachi log loader, a TF820 Timberpro slash forwarder, six Kenworth tractors and another six 48-foot Western chip trailers.

The crews haul all their woody biomass to one of two places: Longview, Wash., which is two hours away, or Wauna, Ore., which is 1.5 hours away. Of all people in the biomass industry, Standley and his team know that the business of biomass transport is a heavy one. But, with the right planning, transport strategy and equipment, moving biomass from the field to the facility can become easier, and lighter on the pocketbooks that pay to get it done.

Field Tested

Standley talked about his company’s operations from an Oregon logging convention while preparing for a presentation about  the nuts and bolts of biomass harvesting. Standley knows firsthand what the right equipment and transport features can do to a harvesting operation and why it makes more sense to harvest slash instead of taking the traditional approach of piling and burning it. He estimates the average site preparation cost savings of harvesting the leftover biomass on a 25-acre clear cutting site, instead of burning it, at roughly $100 to $400 per acre. So, at 25 acres with an average savings of $200 that means a $5,000 savings. The equipment typically required to burn the slash costs between $500 to $1,200 per day; a fire truck rental costs $50 to $100 an hour, and a standby fire crew will run about $15 per hour of labor. The message of Standley’s presentation: Biomass contractors can eliminate all of these expenses, while reinvigorating forests and even making money.

To do that, a harvesting team or a project developer needs to be mindful that the bulk of the costs is tied up in transport. “Of all the cost centers, to get biomass from the field to the plant, transport in our experience is the highest and most significant cost,” says Tad Mason, CEO of TSS Consultants.

Combating those costs safely means understanding the latest technology and equipment options available. “We’ve tried various methods,” Standley explains. “We had some used trailers, but they would break down. Taking those chip trailers up in the brush, they just weren’t built for it. We got by, but to be consistent every day we needed something better.”

By better, Standley means a trailer that is durable enough, light enough and easily maneuverable on tough curves. The trailer also has to have enough capacity to haul at least 16 bone dry tons, it has to be simple to hook up, simple to stage and the jacks shouldn’t sink into the mud.

In 2011, Mason tried to find the best, or at least a better trailer like the one Standley described. Through a study for the Sierra Institute for Community and Environment, Mason analyzed four separate biomass trailering options for a California-based wood waste removal project:
1. Conventional trailer with a straight bed featuring a length of 59 feet, a width of 8.5 feet, a weight capacity of 40 gross tons or 25 net tons, and a volume capacity of 21 cubic units.

2. Conventional trailer with a drop bed featuring a total length of 64 feet, a width of 8.5 feet, a weight capacity of 40 gross tons or 25 net tons, and a volume capacity of 27 cubic units.

3. Short trailer with a length of 49 feet, a width of 8.5 feet, weight capacity of 40 gross tons or 25 net tons, and a volume capacity of 19 cubic units.

4. Stinger steer with a length of 56.7 feet, a width of 8 feet, a weight capacity of 40 gross tons or 21 net tons, and a volume capacity of 21 cubic units.

The biomass removal project directors then chose two of the four options, the short trailer and the stinger steer trailer, which will follow the path of the truck wheels more closely as if the trailer is being steered. The biomass was transported 100 miles from the site and the costs for using each trailer varied. The cost per hour of operation of the stinger steer totaled $90, the short trailer, $85. Hauling costs for the short trailer were $19.14 per green ton of biomass and almost $50 per bone dry ton, while costs for the stinger steer were roughly $30 per green ton and almost $60 per bone dry ton.  In the end, Mason concluded that although both transport systems performed well, the short trailer was more cost effective while the stinger steer was more versatile because of the articulated stinger. In both cases, net revenue generated from biomass recovery helped overall project economics.

Denise Dethlefs, of Biomass Harvesting LLC, says that when the team went looking for more efficient, cost effective trailers, the goal was simple. “Maximize the volume we could haul on a single load and still maneuver in the brush,” she says. And it needed to be done while balancing the cost and function.
So which trailer is the best? While the easy answer is it depends, there are several aspects of biomass transport that will dictate which trailer suits a specific situation.

Latch on to Savings   

Finding a winning financial strategy for hauling biomass out of the forest begins with recognizing that each state’s regulations are different. As Mason explains, on-road transport is regulated at the state, not federal level, so the tonnage allowed in one state may vary from the next.In California for example, the most a truck can haul without acquiring a special permit is 70,000 to 80,000 tons. But in Oregon, the limit is much higher. Those limits are determined by axle spread on the trailers, and because a trucker will sometimes haul biomass over state lines, it’s important to keep state-by-state limits in mind, Mason says.

Once tonnage haul limits are accounted for, it all comes down to two simple phrases, green ton or bone dry ton. “Most biomass in the West is bought and sold on a bone dry ton basis,” Mason says. “So many of the suppliers try to leverage that as much as possible and move down the road with as dry a fuel as possible in order to maximize their revenue.” The supplier needs to recognize that dryer product can mean more money. “In some cases, they may not get their trucks up to weight, and will instead not fill that 50-foot trailer to capacity because they are trying to get 18 to 19 bone dry tons on board,” he says. 

After understanding those two principles of state weight regulations and the unit of measure, a biomass supplier or handling manager needs to understand the importance of an onboard weigh scale system. “It is really important to have those scales,” Standley says. “Our payloads were a lot more constant once we knew what we were hauling.” The Biomass Harvesting crew started its work initially with trucks that didn’t have scales.

“That was one of our downfalls,” Standley says. “One day we’d go in there and it’d be 105,000 pounds and the next day it would be 60,000. It is hard to tell just by watching it.”

Mason agrees. “Onboard scales typically pay for themselves to assure you are carrying optimized capacity,” he says.

In addition to scales, Standley employs a trailer with a double rear axle system, one hydraulically lifted. “When you get to the brush, [the liftable axle] corners better than just a regular 48 footer,” Standley says. “You’d be amazed how much better that corners without that third axle on the ground.” Standley paid roughly $85,000 for those trailers, but in the future, he has his eyes on the stinger steer version, a trailer that he says will run roughly $120,000.

Along with the stinger steer options, which represent one of the greatest innovations in biomass transport operations over the past decade, Mason says there is still room for innovation in moving biomass. In some cases, harvesting crews are hauling material with a pup-trailer set-up, which gives them added weight capacity because of the additional axle spread created by adding another trailer to the back of a larger trailer. “Truckers have had to haul longer distances at times, and I think there may be some innovation with that,” he says.

Truck fuel costs can also be manipulated to create savings during biomass transport, Mason says. “It is a matter of being careful of how you set up your sourcing so that you are moving product to the closest facility and not having trucks passing each other going to different facilities,” he explains. For example, a fuel buyer can trade fuel that is under contract to a closer facility for fuel that might be closer to harvesting operations or a biomass facility. “That way we aren’t writing as big of checks, and in that way, we are being strategic in how we move fiber,” he says.

As for strategy, that might be where it ends. Jayant Khambekar, power industry specialist with Jenike & Johanson Inc., works with biomass companies to develop handling and storage sites and says he doesn’t get involved with the equipment used on the biomass handling side. “We are interested in the material the plant is bringing in,” he says. But there is typically no set strategy or overarching plan that will integrate the way biomass gets from the field, over the road, river or ocean, and into a site’s storage location. “When people come to us, they have already decided the layout and the grand arrangement of how things will look,” he says, adding that the company does advise its clients to communicate with suppliers about their methods.

For Mark Standley, the arrangement will certainly include a stinger steer trailer with an onboard weigh scale, and maybe even a camera on the back to create the perfect trailer. For Tad Mason, the setup will be based on the pricing method for biomass, fuel cost contract options and the distance from the harvesting site to the offload site. And for others it might include a walking floor trailer, a short trailer or some combination of trailer/barge/railcar transport system. In any case, the nuts and bolts of biomass transport and trailering options matter.

“We like to acknowledge upfront that biomass fuel is not a real high-priced commodity, so you only want to touch it once,” Mason says.

Author: Luke Geiver
Associate Editor, Biomass Power & Thermal
(701) 738-4944